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Abstract. At present no in vivo non-invasive method exists for gen-
erating subject-specific ligament meshes from medical images of human
spine. Dynamic ligament meshes can help us to understand the role of lig-
aments in spine dynamics through simulation. In this paper, we present
a semi-automatic method to reconstruct 3D ligament meshes through
computational means from in vivo images of spine. The method uses
vertebral volumetric images and motion information to predict 3D lig-
ament meshes across motion. Generated mesh models can be used as
inputs to joint simulations. Comparison against in vitro experimental
methods shows that our models are accurate. In addition, direct quan-
titative analysis on our generated meshes has shown interesting insights
into the joint conditions of two subjects.
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1 Introduction

Ligament soft-tissues directly constrain the movement of the human spine, by
anchoring together the adjacent vertebrae in the spine. Understanding the role
of these ligaments can provide important insights into joint mechanics and lead
to better understanding of joint-related injuries and diseases. An in vivo and
non-invasive modeling technique is essential to understand the role of the spine
ligaments during everyday normal functionalities. An in vivo non-invasive tech-
nique is also necessary for large scale experimentation with spine ligaments.

However, due to limitations in existing imaging technologies, no in vivo non-
invasive method exists for dynamic modeling of spine ligaments. Ligament mesh
creation techniques based directly on Computed Tomography (CT) or Magnetic
Resonance (MR) images have been proposed for modeling soft-tissues in larger
joints like the shoulder or the knee [1,2]. Such techniques do not transfer to the
spine due to the spine joint complexity and small ligament structures.

We propose a computational method for modeling the 3D surface of spine
ligaments using computed tomography medical volumes and bone motion infor-
mation. This approach enables us to circumvent limitations in the spine imaging
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process. The intuition behind our method is that, because ligaments are soft-
tissues attached to bones and they constrain bone motion directly, the bone
surfaces and their position and orientation over time can be used to predict geo-
metric features of ligaments. This approach builds on recent advances in motion
tracking technology, which enable us to reconstruct bone motion from in vivo
images. The resulting subject-specific dynamic ligament mesh models can help us
to observe ligament deformation during motion. These models can also be used
as inputs to joint simulation methods such as Finite Element (FE) analysis.

2 Related Work

Based on the nature of the generated models, ligament modeling techniques
can be classified in the following three categories: 1. Static 2. Dynamic and 3.
Quasi-static techniques.

Static or quasi-static mesh models [1-3] of large soft-tissue structures such
as knee ligaments and cartilage have been generated from CT and MR images.
However, the limited resolution of these imaging techniques and the complexity
of spine joints make it practically impossible to apply these techniques for spine
ligament modeling.

Manually generated spine ligament meshes have been used extensively in
Finite Element (FE) analysis. However, the manual approach is labor intensive
and time consuming which makes it impractical for real clinical application.
Mesh morphing based techniques [4-6] have been developed to automate the
mesh generation process of bones for FE analysis. However, these techniques
cannot be applied to ligament modeling directly due to the large deformation of
ligaments and the constrain imposed on ligaments by bones.

Ligament models with linear or piecewise linear mesh elements have been
used in dynamic simulation of joints [7]. This method can represent more com-
plex geometries by using analytical wrapping structures such as cylinders or
spheres. Even though this method enables dynamic simulations and reduces the
modeling complexity significantly, these oversimplified models cannot provide
anatomically accurate insights into the ligament geometry and geometric defor-
mations of ligaments that happen due to motion.

A quasi-static method [8] has been proposed for distal-radioulnar ligaments
in the human forearm. The method generates one-dimensional ligament fiber
models and uses motion information which is based on multiple static-postures
over a motion sequence. In this paper, we extend this approach to use continuous
motion information for creating 3D surface models of spine ligaments.

3 Materials and Methods

We propose a semi-automated approach to reconstruct ligament meshes from
captured medical images by applying computational methods. Because ligament
tissues are directly constrained by bone geometries and positions, we use bone
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Fig. 1. (a)Method pipeline for the ligament modeling. First, bone motion information
is reconstructed from 3D CT volume images and 2D dynamic radiographs. Ligament
insertion sites are manually selected. Then, constrained ligament meshes are estimated
across motion using the bone geometry and the motion information. Finally, liga-
ment features are computed by analyzing the constrained geometries across motion.
(b) Reconstructed Anterior Longitudinal Ligament (ALL) and Posterior Longitudinal
Ligament (PLL) meshes of a subject.

geometries and positions to predict ligament models. The reconstructed models
represent constrained geometries of ligaments.

Figure 1 shows our proposed method. First, accurate 3D bone geometry
is captured using a static imaging technique. Next, the motion information of
bones is reconstructed using an in vivo non-invasive model-based method. The
method uses dynamic 2D X-ray images captured during motion and the bone
models generated from the static volumetric images to accurately reconstruct the
bone motion. Then we compute double representations (mesh and distance-field
based) of the 3D bone geometry to facilitate faster computation of inter-bone
joint space measurements. Ligament constrained geometries during a complete
movement sequence are estimated using the hybrid representations and the mo-
tion information of bones. Then we analyze these constrained geometries to get
insight into ligament geometry features. We describe each step of the pipeline in
detail below.

3.1 Data Acquisition and Pre-processing

We used in vivo conditions and real clinical data to test our ligament mod-
eling method. 3D bone geometries required by our modeling process were ob-
tained from a high resolution Computed Tomography (CT) scanner (Light-Speed
16, GE Medical Systems, Waukesha, WI). CT images were segmented semi-
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automatically using 3D medical imaging software to extract individual bone
geometry.

Fig. 2. A dynamic stereo X-ray (DSX) system (a) was used to capture radiographs
during motion. Two X-ray movies are captured from two angles using the system. (b)
shows snapshots from the captured X-Ray movies [9].

3D motion information was reconstructed using our previously developed
model-based hierarchical method [10,11]. The motion reconstruction method
uses a dynamic stereo X-ray (DSX) system (Figure 2) to capture high resolution
X-ray images at a high frame rate. DSX utilizes two frame-synchronized imaging
systems each including a 100 kW cardiac cine-radiographic generator, a 0.3/0.6
mm focal spot size X-ray tube, a 40 cm image intensifier and a high-speed camera
providing 1800x2400 pixel resolution at up to 500 frames/sec with 14-bit dynamic
range.

The basic premise for reconstructing bone motion is a model-based approach
that matches radiographic images to a known bone shape (3D bone models
obtained from the CT scans). A virtual model of the DSX imaging system is
generated using the precise locations of the radiographic sources and image de-
tectors. Simulated X-rays are passed through the bone models to produce a pair
of digitally reconstructed radiographs (DRRs) on the image plane. By manip-
ulating the bone model within a virtual radiographic system, pairs of DRRs
can be generated for any bone position. By calculating image similarity mea-
sures between the actual radiographic image pairs and the DRRs, the virtual
bone position and orientation can be adjusted (manually or by an optimization
algorithm) to identify the position that provides the greatest match, thus deter-
mining the position of the actual bone in space. This process is repeated for each
pair of the images in the motion sequence, and repeated again for each bone of
interest to yield the 3D position of the joint for the entire movement.

3.2 Representations of Bone Geometry

To enable computational modeling of the ligament structures, we compute two
representations (explicit mesh representation and implicit distance-field repre-
sentation) of the 3D bone geometry from the CT images of bones. The bone
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Fig. 3. Double representations of a bone model (a) mesh representation (b) distance
field representation. Red indicates points outside the bone surface and blue indicates
points inside the bone surface. The distance from the surface is mapped to the color
saturation level. (c) Visualization of inter-bone joint space computed using the distance-
field information.

models are segmented semi-automatically by domain experts using 3D medical
imaging software (Mimics, Materialize Inc, Leuven, Belgium). A combination
of segmentation techniques (e.g. region growing, threasholding) is applied and
manually corrected to obtain highly accurate bone models. We did not apply
any smoothing or simplification to the segmented models. The resulting mesh
models have between 10k ~ 20k vertices and 20k ~ 50k faces per vertebra. The
explicit mesh representation (Figure 3a) is used for manual identification of land-
marks such as ligament insertion sites and to visually confirm the correctness of
the generated models. The implicit distance-field (Figure 3b) representation [12]
enables faster computation of joint-space distances (Figure 3c) such as distance
between an arbitrary point in the joint space and the nearest bone surface.

We compute the mesh models using the marching cube [13] algorithm. To
generate distance-field models, we applied the closest point transform method
[12] on the explicit mesh representation.

3.3 Constrained Ligament Path Estimation

From the double bone representations and the reconstructed motion informa-
tion, our method estimates 3D surface models of ligament path constraints. The
generated 3D models represent the minimum-length ligament paths wrapped
around the bone surface and constrained by the bone geometry and position.

The D surface model creation begins with ligament insertion site (the points
where the ligament is attached to the bone) identification. We manually identify
an array of points as ligament insertion sites for each bone. Insertion sites of a
ligament contain the same number of points for all bones. A mapping function
maintains the connectivity information between points of insertion sites.

To compute a ligament model, a single ligament fiber is assumed between
two corresponding points of two insertion sites. The path constraint of a single
fiber is basically the shortest path between its two insertion points constrained
by the bone structures. As in [8], the path constraint is computed using an
optimization method that exploits the distance field representations of the bones
for computational efficiency.
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The optimization algorithm assumes a linear segment between the two inser-
tion points (pg and p,,) of a fiber. Intermediate points (pl...p,_1) are gener-
ated through sampling at uniform intervals. Then the algorithm optimizes the
intermediate points to minimize the length of the path through all intermediate
points under the constraint that no point is inside any bone model. To ensure
efficient computation of the constraints, we use the implicit distance field repre-
sentation. For any point (pgy,.), the distance-field representation (f) gives the
distance (positive if the point is outside the bone surface and negative if the
point is inside the bone surface) between the point and the nearest point on the
bone surface. The optimization routine minimizes the following cost function
(equation 3.1 in [8])

n—1
min Y V(@i —20)? + (i — 9)? + (e — 20 (1)
Ti,Yir2i =0
subject to f(x, i, 2;) > 0,6 =1...n— 1. Since we keep the intermediate points
equally spaced along the path, (z;+1—x;) is constant. Therefore, the optimization
problem reduces to

n—1

min Z Veonst + (yir1 — yi)2 + (zig1 — 2i)? (2)
—0

YisZi 7
K3

subject to f(zi,yi,2;) >0,i=1...n— 1.

We use a sequential quadratic programming (SQP) method (from the high
performance NAG library [14], implemented in C/C++) to solve the optimiza-
tion problem. However, the optimization method is prone to converging towards
local minima. To tackle this challenge, we take advantage of temporal coherence
and use the computed geometry of a frame to initialize the optimization process
of the neighboring frames. We found that this method converged to the correct
solution successfully (on average 150 iterations required per fiber per segment
of the ligament) for all frames of the motion sequences. The resulting ligament
mesh consists of approximately 1400 vertices.

To generate a 3D mesh surface model, we first construct multiple intercon-
nected fibers. Individual fiber paths are computed following the approach de-
scribed above. Then we generate a uniformly distributed equal number of points
along all computed fiber paths. We perform a custom triangulation on the points
to generate the 3D mesh of the ligament (Figure 1b).

3.4 Model Analysis

The 3D ligament meshes generated using our method could be used as input
geometries to joint simulation methods such as FEM. However, even this simple
mesh representation has further uses. We show how a quantitative analysis on
the 3D surface meshes can be used to get insights into the underlying ligament
geometry and to extract useful measurements for comparative analysis.
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Ligament|Avg. neutral length from our models|in vitro avg. length from literature
ALL 19.74+1.11 18.84+1.04
PLL 17.69+2.27 19.0£1.04
Table 1. Average neutral ligament length computed from the mesh models against in
vitro results from biomed literature.

To enable quantitative analysis, we compute average length and average de-
flection of the 3D surfaces for all frames. Average length of a 3D surface model
gives us a lower bound on the ligament length in that posture. Similarly, de-
flection analysis of ligaments during motion may indicate a potential unhealthy
condition of the joint. We also analyze the distance between fibers of the surface
meshes to see if the fiber paths bunch or bundle together along the width of the
ligament models.

To compensate for subject-specific variation across subjects, we designed
normalized measurements. We manually identify a set of frames from the mo-
tion sequences which resemble most a neutral posture. Measurements of all the
remaining frames are normalized with respect to the measurements of these ref-
erence frames. These normalized measurements indicate changes in the ligament
geometry in percentage rather than absolute values, and thus enable comparative
analysis among subjects.

4 Results

Following approval from our Institutional Review Board (Pitt IRB), we applied
our method on real clinical data captured from two subjects - one with healthy
cervical spine and the other with a single level anterior fusion in vertebrae C5-C6.
The fusion patient was tested between 6 and 7 months post surgery. We selected
one healthy and one fusion patient to see how the surgery affects the ligaments
and to validate that our method is applicable for inter-subject comparison. We
selected the two major ligaments [15] of spine: Anterior Longitudinal Ligament
(ALL) and Posterior Longitudinal Ligament (PLL) for our modeling. These con-
tinuous ligaments provide the main support in the anterior and the posterior of
the spinal column.

First, we compare the average lengths of the ligament meshes in the reference
frames (Table 1) of the motion sequence with the previously published neutral
lengths of ligaments estimated through experimental methods on cadavers [16].
Table 1 shows that the computed mesh length is in agreement with previously
published results (within the first standard deviation of our measurements for
both ligaments).

Comparative Analysis. Normalized length and deflection of ligaments per
segment (i.e. C3-C4, C4-C5, C5-C6 and C6-C7) were used to compare the models
generated for the two subjects.

Anterior Longitudinal Ligament (ALL). Comparison on ALL can be
done for one segment (C3-C4) because the fusion surgery removed ALL from
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Fig. 4. Normalized length analyses across the dynamic motion range(from full exten-
sion to full flexion) for each segment of the spinal posterior ligament band for a fusion
and a healthy subject. C5-C6 shows the most significant change in the length variation
across the motion (c). Other segments of the spine compensate for the fusion.
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Fig. 5. Maximum deflection analyses across the dynamic motion range(from full ex-
tension to full flexion) for each segment of the spinal canal for a fusion and a healthy
subject. Because of the fusion, C5-C6 ligament segment shows significant difference in
the deflection. Deflection differences for the other segments are not significant.
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Segment|Normalized length variation range(%)|Deflection variation range(mm)
Fusion Healthy Fusion Healthy
C3-C4 | 12% 4% 0.9mm 0.8mm
C4-C5 | 12% 10% 0.5mm 0.9mm
C5-C6 | 4% 9% 0.2mm 1.1lmm
C6-C7 | 9% 3% 0.1lmm 0.05

Table 2. PLL mesh model comparison (normalized length and deflection variation)
between the fusion and healthy datasets.

the fused bones. We found that the ligament features of the two subjects vary
similarly. For both subjects, normalized length variation is within 18% of the
reference frame length and the deflection variation is within 0.2 mm range.

Posterior Longitudinal Ligament (PLL). Normalized length analysis
and deflection measurements show an interesting pattern for PLL ligament seg-
ments (Table 2). We found a significant difference between the two subjects in
normalized length variation and deflection over the range of motion for the C5-C6
fusion segment (Figure 4c). For the fusion subject, other segments (i.e. C3-C4,
C4-C5 and C6-C7) show increased length variation indicating more movement
in these segments to compensate for the fusion in C5-C6 (Figure 4). In a healthy
spine, C4-C5 and C5-C6 segments account for more motion than the C3-C4 and
C6-C7 segments. Deflection variations of the segments other than C5-C6 cannot
be considered significant because our bone models are created from CT images
with resolution 0.3mm~0.5mm (Figure 5).

We computed the inter-fiber distances for the longitudinal ligaments across
the motion sequence. Change in inter-fiber distances is an indication of interac-
tion of ligament fibers perpendicular to the fiber direction. We did not observe
any bundling of fibers and significant change in inter-fiber distances (0.05% ~
3.5% of the average width). This agrees with the anatomic knowledge that lon-
gitudinal ligament fibers are mostly oriented parallel to the length of the spine
and provide almost no mechanical support perpendicular to the fiber direction.

5 Discussion and Conclusion

The results show that our image-to-mesh models are in agreement with mea-
surements from experimental in vitro methods. Comparative analyses between
a healthy and a fusion patient show smaller variation of ligament lengths in the
fusion segment and larger variations in the surrounding segments. This indicates
that our method can capture anatomically significant subject-specific features
of ligaments. Because the method is mostly automatic and allows in vivo non-
invasive modeling, it can be applied in control group studies to get insights into
ligament related diseases and injuries.

Note the measurements are in general agreement with reports from in wvitro
studies, despite anatomical variation, as well as variation in procedural length
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definition across studies; for example, Przybylski et al. [17] define lengths as the
span over inter-vertebral discs, resulting in shorter reported lengths.

The optimization algorithm of our tool is fully automatic and requires ap-
proximately 5 minutes per frame in a standard PC (2 GHz processor, 4.00 GB
RAM). The ligament geometries are pre-computed and then loaded for real-time
visualization and analysis. Using parallel computation can significantly reduce
the runtime of the optimization.

Our modeling pipeline requires the identification of insertion points and ref-
erence frames. This step requires less than an hour per subject (less than 50
minutes for locating insertion sites of all bones and less than 5 minutes for iden-
tifying neutral frames within the motion sequence). Please note that these man-
ual steps are performed to the best of the user’s capability. No in vivo approach
exists today for accurate identification of these features for spine.

Our method successfully handles geometric variations of different vertebral
bodies and the geometric changes due to fusion. In terms of limitations, ligament
insertion sites may vary across human subjects and thus influence our mesh re-
construction. This type of insertion data, respectively ligament geometry cannot
be currently acquired non-invasively for the spine. Furthermore, validation of
the reconstructed meshes against in vitro data is challenging because ligament
loading conditions and their properties change significantly when the ligaments
are removed from the joint.

Our ligament models are simple 3D surfaces rather than 3D structures. We
made this assumption because the thickness of longitudinal ligaments is not di-
rectly constrained with bone geometries and positions. In addition, limited res-
olution of the bone geometry and the accuracy level of motion information used
in our method would make the small measurements of the ligament thickness
(generally < 1.5 mm) insignificant.

In our approach, we have used a hierarchical model-based motion reconstruc-
tion method which has been previously reported to have sub-millimeter accuracy
for in wvivo cervical spine studies. Using alternative, lower accuracy motion re-
construction methods may affect the quality of the mesh model reconstruction.

In future, we would like to validate our method using cadaver data or by
applying the method to larger joints like the knee, where MR images can capture
the joint ligaments. However, validation of the reconstructed models against
in-vitro data would be problematic because the ligament soft-tissue deforms
significantly when dissected due to the change in loading conditions. Thus, in-
vitro validation would lead to inaccurate measurements.

We would also like to analyze the uncertainty due to the identification of
insertion sites and the references frames manually. Another direction of future
work would be developing an automated technique to estimate the ligament
insertion sites and the reference frames using anatomical features. This approach
would further reduce the manual labor required for the tool.

Currently the mesh optimization run-time is a hindrance for the tool to
be clinically relevant. However, the issue can be easily resolved by using more
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processors or parallel implementation of the algorithm or a better optimization
scheme.

In conclusion, we have designed and developed a semi-automatic method
to reconstruct 3D ligament meshes from captured multimodal images of joints.
The method is in vivo and non-invasive, and it allows subject-specific dynamic
analysis of spine ligaments. The method generates anatomically accurate models
and enables comparison between different subjects.

Because the method uses in vivo data, it can be applied in large scale exper-
iments for validating hypotheses related to spine ligament injuries and diseases.
The generated mesh models can be used as geometry inputs to FE analyses of
spine. Because the manual processing is not significant, the tool has potentials
for real clinical scenarios. The tool can also be very useful for biodynamics and
orthopedic research.

Ethical approval. All subjects for the study signed Institutional Review Board
(IRB: PRO08120294 dated 24 March 2009)-approved informed consent forms
before being enrolled in the study.
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