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Abstract

We present a novel approach for automatically, accurately and reliably

determining the 3D motion of the cervical spine from a series of stereo or

biplane radiographic images. These images could be acquired through a va-

riety of different imaging hardware configurations. We follow a hierarchical,

anatomically-aware, multi-bone approach that takes into account the com-

plex structure of cervical vertebrae and inter-vertebrae overlapping, as well as

the temporal coherence in the imaging series. These significant innovations

improve the speed, accuracy, reliability and flexibility of the tracking process.

Evaluation on cervical data shows that the approach is as accurate (average

precision 0.3mm and 10) as the expert human-operator driven method that

was previously state of the art. However, unlike the previously used method,

the hierarchical approach is automatic and robust; even in the presence of

implanted hardware. Therefore, the method has solid potential for clinical

use to evaluate the effectiveness of surgical interventions.
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1. Introduction

Accurate in-vivo motion tracking is important for understanding articu-

lation kinematics [1, 2], musculoskeletal related diseases and the effectiveness

of different treatments. For example, to correlate abnormal motion with mor-

phological features such as inter-vertebral disc height (< 3mm in posterior

space [3]), sub-millimeter accuracy is needed to avoid errors as large as 30%

in disc-deformation measurements.

Model-based methods have been developed to measure 3D bone motion

with high accuracy at knee or shoulder joints [4, 5, 6]; such methods employ

3D models of the bones, which they track through a sequence of dynamic

x-ray images. Model-based methods are more accurate than skin marker-

based methods, which suffer from errors as large as 10mm in translation

and 8o in rotation [7]. They can also capture dynamic motion, unlike ex-

isting three-dimensional techniques such as Computed Tomography (CT,

which also features higher radiation exposure, depending on the anatomic

location) or Magnetic Resonance Imaging (MRI). Finally, unlike dynamic

three-dimensional techniques (Cine-PC MRI [8]), model-based methods do

not require continuous movement for long periods of time during data collec-

tion, support in general large ranges of motion, and pose fewer restrictions

during imaging, thus leading to loadings more similar to most everyday move-

ments. Given the advantages of model-based tracking, systems implementing

model-based methods are utilized in various forms at several different aca-

demic institutions and medical research centers; the basic imaging hardware

required for biplane radiography setup costs less than one third of what a

modern 3T MRI scanner costs.

2



However, existing implementations of 3D model-based tracking methods

suffer from the same critical issues. The existing tracking processes are ex-

tremely labor-intensive, requiring many (up to 30) hours of labor for every

hour spent collecting data. Furthermore, a high level of expertise is required

to generate trustworthy results. For this reason the tracking task cannot

be reliably delegated to a crowd-sourcing approach such as the mechanical

turk [9]. Accuracy and reliability, especially for the more automated algo-

rithms, are inconsistent. Simultaneous acquisition of a pair of radiographic

images is a prerequisite for all systems claiming high 3D accuracy, but this re-

quirement creates significant image quality problems due to scatter radiation

(a widely known issue for biplane radiographic imaging, which can become

intractable for imaging the thicker parts of the body such as hips or the lum-

bar spine). It is also often difficult or impossible to obtain two radiographic

views that avoid bone overlap in the images, which also degrades imaging

matching performance using conventional tracking approaches. Surgically in-

serted hardware further decreases tracking accuracy and robustness. These

limitations have thus far limited application of this technology to research

studies, since the time and cost for data analysis is prohibitive for clinical

use.

In this paper, we propose and validate an automated intelligent, hierar-

chical model-based method to track with sub-millimeter accuracy the 3D

motion of cervical vertebrae from dynamic biplane radiographs. The spe-

cific goal of this work is automation while matching the accuracy of human

expert operators on difficult, clinical cervical spine data. However, we note

that similar challenges exist in accurate tracking of all multi-articular joints,
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many of which feature significant bony or hardware overlap (e.g. the hip,

shoulder, wrist or ankle).

2. Methods

The basic premise for tracking bone motion is a model-based tracking

approach that matches radiographic images to a known bone shape. 3D

models of the bones of interest are obtained using conventional imaging (CT

or MRI scans). A virtual model of the stereo-radiographic imaging system is

generated using the precise locations of the radiographic sources and image

detectors (which can be determined automatically by imaging a calibration

object of known dimensions). Simulated x-rays are passed through the bone

model to produce a pair of digitally reconstructed radiographs (DRRs) on

the image plane. By manipulating the bone model within the virtual ra-

diographic system, pairs of DRRs can be generated for any bone position.

By calculating image similarity measures [10, 11] between the actual radio-

graphic image pairs and the DRRs, the virtual bone position and orientation

can be adjusted (manually or by an optimization algorithm) to identify the

position that provides the greatest match, thus determining the position of

the actual bone in space. This process is repeated for each pair of the images

in the motion sequence, and repeated again for each bone of interest to yield

the 3D position of the joint for the entire movement.

In conventional model-based tracking, the presence of overlapping bones

(a common occurrence) reduces the quality of image matching and degrades

tracking performance. Also, tracking each bone independently ignores the

known characteristics of joints that constrain the relative bone movements.
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We introduce a hierarchical multi-bone model approach, in which multiple

bones are combined in a single 2D projection and simultaneously matched

with the radiograph images. This approach takes advantage of the rich detail

present in regions of radiographic bone overlap, which can therefore enhance,

rather than degrade, tracking performance. By incorporating hierarchical,

anatomically aware, multi-articular models of joints, as well as temporal

coherence, tracking reliability can be further enhanced by exploiting known

constraints that are defined across space and time.

The method uses a new digitally reconstructed radiograph generation pro-

cedure which takes into account multiple bones and results in a Multibone

DRR (i.e., a MDRR), a standard image processing step, and a novel hierar-

chical optimization procedure. For each X-ray frame in the motion sequence,

a 2D projection (the MDRR) is generated from the multiple reconstructed

bone models. Next, both the X-ray and the 2D projection images are pro-

cessed to reduce noise and enhance edges. Finally, an optimization method

searches through different positions and orientations of the bone models to

find the best match between the MDRR and the X-ray image. The process

is repeated for all frames of a motion sequence (Fig. 1).

While a variety of imaging hardware setups can be used in practice to

acquire dynamic radiograph images, for our experiments high-resolution X-

ray images were captured using a dynamic stereo X-ray (DSX) system, and

3D volumetric images of the bones of interest were acquired with a high-

resolution static computed tomography scanner (see subsection 2.5).
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Figure 1: Model-based tracking method overview. The method uses a three step process:

2D projection, image processing, and optimization. The process is repeated for all frames

of a motion sequence.

2.1. MDRR Generation

Model-based tracking [5] is based on the idea that an X-ray image can be

computationally produced using a simplified X-ray generation model [12]:

I(p) =

∫

L

µ(r)dr (1)

where I(p) is the intensity of the X-ray detector pixel p, µ(r) is the X-ray

attenuation coefficient, and L is the projection beam from source to point p.

This model assumes that the X-ray system corrects for beam divergence and

that the sensors have logarithmic response.

I(p) can be estimated using ray casting of the CT image and the result-

ing image is known as the Digitally Reconstructed Radiograph (DRR). The

segmented CT image serves directly as the 3D bone model.

However, in reality the intensity of a pixel I(p) not only depends on the

bone of interest, but also on any other structure the beam L passes through.

Thus, I(p) can be thought of as integration of contributions from several
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different sources:

I(p) = Ic(bone of interest) + Ic(neighboring bones)

+Ic(metallic implants) + Ic(other bones)

+Ic(soft tissue) + Ic(random noise) (2)

where Ic(O) represents contribution to pixel (x, y) due to object O.

(a) (b) (c)

Figure 2: Single-bone projection of C4 (a) and multi-bone projection of C4 (c). Notice

how the presence of C3 and C5 (b) changes the signature of C4 (in (c)) in the adjacent

region.

Existing conventional bone-tracking methods assume that the contribu-

tion to a pixel intensity from all the sources except the bone itself is negligi-

ble or constant [5]. This assumption does not hold for spine data (and other

joints) where neighboring bones and implants overlap significantly. A single-

bone DRR (SDRR) is nonetheless generated using only the model of the bone

being tracked, and accounts only for the first term, Ic(bone of interest).

To account for contributions from neighboring bones and surgical im-

plants, we propose the following model for multi-bone DRR (MDRR) gener-

ation:

IMDRR(p) = Ic(bone of interest) + Ic(neighboring bones)

7



+Ic(metallic implants) (3)

In this approximation, it is assumed that contribution due to non-neighboring

bones (e.g. shoulder, skull) can usually be avoided by careful positioning of

X-ray sources and detectors. Any contribution due to soft tissue and ran-

dom noise is assumed negligible here. This approach also does not account

for possible differences between kVp settings of the CT and the fluoroscopy

system [13]. Although still an approximation, the resulting MDRRs have a

more realistic signature in adjacent regions than the SDRRs (Fig. 2).

We use ray-casting volume rendering through multiple neighboring bones

to generate MDRRs. On a single 2.0 GHz processor, each MDRR generation

requires on average 100ms. However, during bone position and orientation

optimization more than 500 MDRRs may need to be generated for each

motion frame. A sequential implementation would require approximately 6

hours of computation time to track 6 vertebrae over 60 frames. To reduce the

computation time, we use a parallel implementation of the MDRR generation

process.

2.2. Image Processing

The image processing steps and the similarity metric are similar to earlier

studies [4, 5] enabling us to isolate and investigate the effect of MDRRs and

hierarchical optimization. The MDRRs and the X-ray images are passed

through several standard image processing steps to reduce noise and enhance

edges of the images. Summarizing [4], a 3x3 discrete Gaussian filter is first

applied to reduce noise (Fig. 3a and b), then a 3x3 Sobel filter is applied to

extract edges (Fig. 3c) from the smoothed images. Finally, an edge-enhanced
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(a) (b)

(c) (d)

Figure 3: X-ray image processing for both cameras of a random trial. (a) Raw images.

(b) Gaussian-filtered images. (c) Gaussian and Sobel filtered images. (d) Gaussian, Sobel

and weighted averaged images. Snapshots (c) and (d) have been contrast-enhanced for

printing purposes.
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image (Fig. 3d) is produced by taking the weighted average of the Gaussian-

smoothed image g and the Sobel edge-extracted image h:

k(x, y) = w0 ∗ g(x, y) + w1 ∗ h(x, y)

w0 and w1 are empirically determined to be 0.1 and 0.9 for MDRRs and 0.15

and 0.85 for X-ray images.

2.3. Similarity Metric

The similarity between edge-enhanced X-ray and MDRR images is mea-

sured using normalized correlation (r) (previously used in [14]) which has

been reported as one the best performing similarity metrics [15] for high-

resolution, real clinical data.

r(j=1,2) =
∑

(IXrayj (x, y)− IXrayj )(IMDRRj
(x, y)− IMDRRj

)
√

∑

(IXrayj (x, y)− IXrayj )
2

√

∑

(IMDRRj
(x, y)− IMDRRj

)2

for all pixels (x, y) such that IMDRR(x, y) 6= 0. Here, j denotes the X-ray

camera number of the bi-plane X-ray system. Following Bey et. al. [4],

correlations for two sets of X-ray and MDRR images are multiplied to get

the final matching score.

corr(IXray1, IXray2 , IMDRR1
, IMDRR2

) = r1 ∗ r2

2.4. Hierarchical Optimization

While MDRRs have the potential to increase the accuracy and robustness

of tracking, they also pose challenges in terms of the optimization of search

space. We use a quasi-Newton optimization method for finding the point
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of the maximum matching score. Each bone i has 6 degrees of freedom,

expressed in matrix form as: Mi = (Tx, Ty, Tz, Rx, Ry, Rz), the concatenation

of 3 translations and 3 rotations. Translations and rotations are specified

with respect to a local coordinate system. The origin (CTx, CTy, CTz) of the

local coordinate system (Fig. 4.a) is the center of mass of a CT object:

CT(X=x,y,z) =

∑

X ∗ f(x, y, z)
∑

f(x, y, z)

where f denotes the CT image.

The objective function for the optimization method is:

max
Tx,Ty,Tz ,Rx,Ry ,Rz

∏

j=1,2

corr[IXrayj , IMDRRj
(T (CTObject))]

where

T = Tx.Ty.Tz.Rx.Ry.Rz.T−CTx
.T

−CTy
.T

−CTz

is the composite transformation matrix and j denotes the two cameras of a

DSX system. The equation shows optimization of a single bone; however, it

can be expanded for multiple bones as necessary. The search is initialized

by a human operator for the first two frames. For the remaining frames,

initialization is done by exploiting temporal coherence.

Ideally, all bones of the hierarchy would be present in the MDRR and the

optimization algorithm would tackle all bones simultaneously. However, such

an approach becomes computationally intractable due to the large, relatively

unorganized search space and to the large number of degrees of freedom (6n

where n is the number of the bones). In contrast, employing temporal coher-

ence, inter-frame and inter-bone motion priors, and a systematic hierarchical

technique can reduce the search space significantly. At the same time, a hi-
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(a) (b) (c)

Figure 4: (a). Local coordinate system defined on a vertebra. (b) Anatomical coordinate

system (used for analysis) defined on the same vertebra. (c) System configuration for

cervical flexion-extension trials. In this image, X-ray sources (left) direct X-rays through

the subject to image intensifiers (right).

erarchical approach should allow sufficient degrees of freedom between bones

to capture joint motion accurately.

Based on the above observations we chose a coarse-to-fine, multi-pass

strategy. The first two passes correspond to a coarse search for the bone

location and orientation. Two additional passes correspond to a fine tuning

stage, and use fewer degrees of freedom and increasingly more constraints.

In terms of relative contribution, early experiments showed that phase 1

and 3 significantly impact the registration robustness. The exclusion of phase

1 in the search method produced off-track solutions and the exclusion of phase

3 produced very poor quality solutions. Phase 2 and 4 contribute primarily

to tracking accuracy. Together, the four phases complement each other and

lead to a robust and accurate solution, as demonstrated in Section 3.

Below we describe each phase in detail using an example linear hierarchy

consisting of n bones, B1 (first) through Bn (last). Let Ki be the set of
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bones which are used to generate MDRR at the ith round of a given phase

and Li = (Bj|Fk) be the subset of bones Bj in Ki which are optimized during

the ith round of the given phase, given the fixed position and orientation of

the Fk bones.

Phase 1: Temporal Coherence The first phase uses temporal coherence

to find a good starting position for each bone (Fig. 5). This step is par-

ticularly important, given that the cost function is smooth across narrow

ranges, and thus prone to local minima. To facilitate reliable convergence,

it is important to start the search from a sufficiently large set of plausible

initial placements. Using the position and orientation of a bone in the most

recent two frames, we predict the most likely area in the current frame to

search for the optimal position and orientation. We extrapolate the posi-

tions of the previous two solved frames (r1 and r2 in Fig. 5) to predict the

position in the current frame. Then we generate intermediate positions (in-

termediate circles in Fig. 5) between the predicted position and the position

of the closest solved frame. Finally, we find the best-match position among

all these potential positions. The rationale of multiple intermediate points is

that a bone can change its direction and speed of movement. Multiple inter-

mediate points help to compensate for this variation in speed and direction.

Subsequent phases thoroughly search the region surrounding a selected seed

location (cross points in Fig. 5) in order to capture accelerated and deceler-

ated motion. The intermediate seed points are generated uniformly so that

the translation difference or the angle difference between two consecutive seed

points are at most 0.1mm or 0.10; the spacing was empirically determined by

taking into account the image resolution (0.23mm CT resolution and 0.3mm
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pixel size, see Table 1), and the smooth kinematics of the data (under 2mm

and 20 between-frame motion; the chosen spacing could capture ranges of up

to 5mm and 50 between-frame motion).

The sets Ki and Li for this phase are: Ki = {Bi} and Li = Ki

where i = 1 : n.

p

r2

r1

Figure 5: A conceptual 2D diagram of phase 1. r1 and r2 represent the bone in the previous

two solved frames. p is the predicted point for current frame. Intermediate circles represent

the additional intermediate points. The circle within the diamond represents the selected

seed point. The cross points represent the surrounding regions which are going to be

searched in the next phases.

Phase 2: Pairwise Optimization The purpose of phase 2 is to refine the

seed location from phase 1 with the help of adjacent bone location informa-

tion. To this end, we optimize each pair of adjacent bones (e.g. B1 − B2,

B2−B3 and so on) in the hierarchy by optimizing over 12 degrees of freedom.

Optimizing two adjacent bones simultaneously helps adjust their position

and orientation with respect to each other. This optimization step is com-

putationally tractable while providing the necessary and sufficient degrees of

freedom between neighboring bones in order to adjust their relative position

and orientation.

Ki = {Bi, Bi+1} and Li = Ki

where i = 1 : n− 1.

Since bone kinematics are temporally smooth, we further constrain the
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search space by including motion priors into the optimization. The search

range is restricted within twice (empirically determined) the magnitude of

the bone motion (under 2mm and 20 in our datasets) in the most recent

two frames. This motion prior allows sufficient freedom for bone movement

but prevents sudden large movement. Theoretically, the search space could

be further reduced by incorporating the fact that different bones cannot

penetrate each other. However, the computational cost of detecting 3D inter-

penetration makes such an approach less desirable.

Phase 3: Biased Singleton Refinement The purpose of this phase is to

refine the position and orientation for each bone by searching in the region

chosen by phase 2. We note that the bones of a hierarchy are unequally

easy to track. For example, bones at the top (e.g. cervical vertebra C3

in a hierarchy of C3-C7) are easier to track due to less soft tissue and less

interference from surrounding bones. The hierarchical search method takes

advantage of this prior information by biasing the order in which individual

bones are optimized. In the spine case, we optimize each bone of the chain

sequentially (starting from the top of the chain and moving towards the

bottom) in the presence of the previous bone in the hierarchy. Since we

optimize one bone at a time, the optimization is over 6 degrees of freedom.

Ki = {B1, ..., Bi} and

Li = {Bi|B1, ..., Bi−1are kept fixed}

where i = 1 : n.

Phase 4: Neighbor-Constrained Refinement This is a refinement phase

that works similarly to phase 3, but takes into account both predecessor and

successor bones in the hierarchy. The movement of each bone during the
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optimization is restricted by the presence of all the surrounding bones of the

hierarchy. This helps to find the optimal position and orientation for the

whole hierarchy.

Ki = {B1, ..., Bn} and

Li = {Bi|B1, ...Bi−1, Bi+1, ..., Bnare kept fixed}

where i = 1 : n.

2.5. Validation

Datasets. To validate and evaluate the hierarchical, multi-bone ap-

proach we used in vivo conditions and real clinical data. 3D volumetric

images of the bones of interest were obtained from a high resolution static

computed tomography (CT) scanner (LightSpeed 16, GE Medical Systems,

Waukesha, WI). CT images were segmented using 3D medical imaging soft-

ware (Mimics, Materialize Inc, Leuven, Belgium) to extract individual bone

geometry.

A Dynamic Stereo X-ray (DSX) system was used to capture high resolu-

tion X-ray images at a high frame rate. DSX utilizes two frame-synchronized

imaging systems, specifically designed for dynamic measurement and mounted

in a custom-designed, flexible positioning system to optimize viewing angles

and provide freedom of subject movement. Each imaging system includes

a 100 kW constant-potential high-frequency cardiac cine-radiographic gen-

erator (CPX-3100CV, EMD, Quebec, CA), a 0.3/0.6mm focal spot size X-

ray tube (G-1582; Varian, Salt Lake City, UT), a 40 cm image intensifier

(TH9447QX; Thales, France), and a high-speed camera providing 1800x2400

pixel resolution at up to 500 frames/sec with 14-bit dynamic range (Phan-

tom V10; Vision Research, Inc., Wayne, NJ). The EMD X-ray generators
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included upgraded software (provided by the manufacturer) to provide 1 ms

pulses at repetition rates up to 180Hz, providing blur-free images and a dose

reduction of 4-16X (relative to continuous operation). A calibration object

(a cube) is used to calibrate the camera system. Figure 4.c shows the system

configuration for a flexion-extension trial; X-ray beams are approximately

50 degrees apart. For twist trials, the subject is rotated to face one X-ray

source, and the X-ray sources are lowered and tilted up 15 degrees, while the

image intensifiers are raised and tilted down 15 degrees.

13 trials were acquired from 3 human subjects (1 male, 2 female, aged

between 35 - 40) — 3 flexion/extension and 3 axial rotation trials from subject

1 and 2 and 1 flexion/extension trial from subject 3. Two of the test subjects

have single-level anterior fusion in C5 and C6 and the remaining subject has

single-level anterior fusion in C4 and C5. A fusion is performed by attaching

a metal plate with two vertebral bodies using 4 screws. Trials from the

subjects were taken between 6 and 7 months post surgery.

Tantalum beads were implanted into the fused cervical vertebrae and their

adjacent bones during the fusion surgery so that a high accuracy ground truth

solution could be produced by tracking the beads [5]. The subject with C4-5

fusion had beads into cervical vertebrae C3, C4, C5 and C6. Subjects with

C5-6 fusion had beads into cervical vertebrae C4, C5, C6 and C7. Bead

signatures were manually removed from the CT slices prior to MDRR gener-

ation by replacing voxels containing bead signatures with the average of the

neighborhood voxels which do not belong to beads. In this way the beads

did not influence the hierarchical and the operator-assisted tracking methods.

For validation purposes, the center of each bead was also manually identified
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in the CT scans.

For these subjects and trials we tracked 5 cervical vertebrae (C3 - C7) and

the fusion hardware. In the clinical study that generated this data cervical

vertebrae C1 and C2 were not tracked (C1 and C2 are often completely

overlapped by other anatomical structures), and so they did not have beads

implanted into them to produce a ground truth solution. Table 1 shows

additional specifications of our datasets.

Bone Cervical Spine (C3 − C7)

Motion Flexion/extension, axial rotation

Total trials 13

Original CT Resolution(mm) 0.23x0.23x1.25

Interpolated CT resolution (mm) 0.23x0.23x(0.23∼0.5)

X-ray image resolution 1024x1024

Number of frames per trial 60 ∼ 100

Frame capturing rate 30 frames/sec

Pixel size of x-ray image (mm) 0.30x0.30

Table 1: Experiment data set specification

Ground Truth. We obtain the ground truth by tracking the implanted

beads in the distortion-corrected radiographs as described previously [5]. To

validate this ground truth, we measure bias and precision [16]. Summa-

rizing these references, first inter-bead distances (di where i is the frame

number) are calculated per bone over an entire trial from the bead tracking

(i.e. ground truth) results. True inter-bead distance (D) is measured by

manually detecting the beads in the CT image. Next, differences between

the inter-bead distance computed from the CT data and the bead tracking

based solution (D−di) are calculated for each frame over an entire trial. Bias
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and precision are defined as the mean and standard deviation of the differ-

ences over the entire trial and are summarized over all trials to report in the

form mean±standard deviation. Bead-based tracking is used as the “gold

standard” to calculate the accuracy of the operator-assisted single-bone and

hierarchical multi-bone tracking.

Analysis. Performance of the operator-assisted single-bone and the hi-

erarchical multi-bone methods are compared for each bone and each axis in

terms of bias, precision [5, 16] root-mean-squared (rms) error, and maximum

error. These performance metrics are computed with respect to the bead-

based ground truth solution. For each method (operator-assisted, ground

truth and hierarchical) the bead centroid locations are computed as the av-

erage of the three known bead coordinates of a bone over all frames of a trial.

The differences between estimated bead centroid (hierarchical or operator-

assisted method) and the ground truth bead centroid locations are computed

for each bone and for each axis across all frames of a trial. Bias, precision,

rms error and maximum error are defined as the mean, standard deviation,

rms value and maximum value of this time-history of differences. Finally,

bias, precision and rms error are summarized as the mean, standard devia-

tion and maximum error over all trials. To compare the performance of the

operator-assisted and the hierarchical method for a bone along all three axes

simultaneously, Hotteling’s T-squared tests (α = 0.05) are performed for the

three axes on bias, precision and also rms error of the bone.

To further compare the accuracy of both methods in clinically relevant

terms, an anatomical coordinate system was defined at the center of each

vertebra [17]. The axes of the anatomical coordinate system are Anterior-

19



Posterior (AP) axis, Superior-Inferior (SI) axis and Medial-Lateral (ML) axis,

and correspond to the main axes of the vertebral body (Fig. 4.b). Transla-

tions and rotations of each pair of vertebrae with respect to the three axes are

computed from the bead-based, the assisted single-bone and the hierarchical

multi-bone method solutions. Error (in terms of bias and precision) in the

assisted single-bone method and the hierarchical method with respect to the

bead-based ground truth is computed and then tested using a Hotteling’s

T-squared test (α = 0.05).

In our experiments, the operator-assisted single-bone method was guided

by an expert operator and the solution was checked and refined manually.

The hierarchical method did not require any human assistance after initializa-

tion. We compare the solutions from these two methods in terms of accuracy,

robustness and run time.

3. Experimental Results

There was no bias in the implanted bead tracking solution (Table 2) i.e.

in the ground truth. Average precision over all bones is 0.11mm which is

very similar to results published earlier [5, 18].

3.1. Accuracy

Figure 6 shows the bias in the hierarchical multi-bone method and the

operator-assisted single-bone method. We did not find any statistically signif-

icant difference (p > 0.01) in bias between the hierarchical and the operator-

assisted methods (Table 3) for any bone in any coordinate system direction.

This finding indicates that the hierarchical multi-bone method has similar
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Bone Bias precision

C3 0.05±0.03 0.11±0.02

C4 0.04±0.03 0.10±0.03

C5 -0.04±0.10 0.12±0.02

C6 0.04±0.07 0.12±0.04

C7 0.02±0.05 0.08±0.03

Table 2: Bead-based tracking accuracy (bias and precision). All measurement units are

in mm.

Mean ± standard deviation of bias over all trials

Hierarchical multi-bone method Operator-assisted single-bone method

Axis X Y Z X Y Z

C3 0.04±0.12 0.01±0.17 0.08±0.05 -0.04±0.17 -0.04±0.22 0.03±0.08

C4 0.07±0.08 0.02±0.15 0.18±0.16 -0.03±0.13 0.05±0.09 0.21±0.14

C5 0.19±0.20 0.06±0.39 -0.07±0.31 0.22±0.18 0.11±0.29 -0.07±0.42

C6 -0.08±0.25 -0.04±0.10 0.07±0.14 0.00±0.49 0.12±0.22 0.04±0.14

C7 -0.18±0.14 -0.27±0.06 -0.12±0.18 -0.13±0.06 -0.16±0.10 0.02±0.07

Table 3: Bias of the hierarchical method and the operator-assisted method. All measure-

ment units are in mm. No statistically significant difference was found in bias (p > 0.01)

for any bone between the hierarchical and the operator-assisted method.
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Figure 6: Bias of the hierarchical method and the operator-assisted method. X, Y and

Z denote the axes of comparison. No statistically significant difference (p > 0.01) was

found in bias between the hierarchical and the operator-assisted methods for any bone.

However, note that the bias for C5 and C6 is relatively higher than the bias for C3, C4 and

C7 due to the hardware implant in C5 and C6. Still, the hierarchical multi-bone method

has achieved sub-millimeter accuracy for C5 and C6 (max bias 0.62mm) along with the

other vertebrae. Results are averaged over 13 trials from 3 subjects, 60 ∼ 100 frames per

trial.
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accuracy to the operator-assisted single-bone method. C5 and C6 have rela-

tively higher bias than C3, C4 and C7 along the X and Y axes both for the

operator-assisted single-bone and the hierarchical methods. Maximum bias

of C3, C4 and C7 using the operator-assisted single-bone method along the

X and Y axes are approximately 7 and 3 times higher than the maximum

bias of C5 and C6 using the same method along X and Y axes. In contrast,

maximum bias of C3, C4 and C7 using the hierarchical multi-bone method

along the X and Y axes is approximately 3 and 4 times higher than the max-

imum bias of C5 and C6 using the same method along the X and Y axes. C5

and C6 tracking results show relatively higher bias than other bones because

C5 was fused in all three of our subjects and C6 was fused in two of our

three subjects. Fused vertebrae are typically harder to track due to rela-

tively inaccurate CT-scan models of the fused bones (extracting a CT bone

model from fused vertebrae is more difficult than extracting a bone model

from non-fused vertebrae), interference from hardware during tracking etc.

However, the bias for the hierarchical method for C5 and C6 along any axis

was less than 0.62mm; for the operator-assisted single-bone method it was

less than 1.07mm which indicates that the hierarchical multi-bone method

has sub-millimeter accuracy for all vertebrae, including the ones which have

been affected by fusion surgery.

Figure 7 compares precision of the hierarchical multi-bone method and the

operator-assisted single-bone method. Hierarchical multi-bone method preci-

sion ranged from 0.03mm to 0.34mm depending on axis direction. Operator-

assisted single-bone method precision ranged from 0.04mm to 0.55mm de-

pending on axis direction. We did not find any statistically significant dif-
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Mean ± standard deviation of precision over all trials

Hierarchical multi-bone method Operator-assisted single-bone method

Axis X Y Z X Y Z

C3 0.20±0.05 0.16±0.09 0.12±0.02 0.21±0.08 0.16±0.04 0.14±0.05

C4 0.09±0.03 0.09±0.03 0.07±0.02 0.12±0.07 0.12±0.05 0.09±0.04

C5 0.13±0.04 0.14±0.04 0.09±0.02 0.22±0.11 0.16±0.05 0.12±0.05

C6 0.14±0.07 0.13±0.07 0.07±0.02 0.19±0.10 0.19±0.13 0.12±0.08

C7 0.09±0.02 0.11±0.05 0.07±0.03 0.10±0.02 0.15±0.09 0.07±0.04

Table 4: Precision of the hierarchical method and the operator-assisted method. All

measurement units are in mm. We did not find any statistically significant difference

(p > 0.01) in precision between the hierarchical and the operator-assisted method for any

bone.
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Figure 7: Precision for the hierarchical and the operator-assisted single-bone method. X, Y

and Z denote the axes of comparison. We did not find any statistically significant difference

(p > 0.01) in precision between the hierarchical and the operator-assisted method for any

bone. Results are averaged over 13 trials from 3 subjects, 60 ∼ 100 frames per trial.
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ference (p > 0.01) in precision between the hierarchical and the operator-

assisted methods (Table 4) along any coordinate system direction. Precision

was bone-independent for both of the methods. The last bone to track (C7)

shows slightly worse accuracy in the hierarchical method than in the operator-

assisted single-bone method. A possible explanation is that C7-s have more

soft tissue surrounding them compared to other bones in the dataset. There-

fore, the assumption of negligible contribution in pixel intensity due to sur-

rounding soft tissue for MDRR generation (Eq. 3) may no longer hold for

C7, making human intervention particularly valuable. We note that for the

operator-assisted single-bone method C5 and C6 show slightly lower precision

(statistically not significant) than C3, C4 and C7.

Mean ± standard deviation of root-mean-squared error over all trials

Hierarchical multi-bone method Operator-assisted single-bone method

Axis X Y Z X Y Z

C3 0.23±0.05 0.23±0.07 0.15±0.03 0.26±0.10 0.25±0.08 0.16±0.04

C4 0.14±0.04 0.16±0.08 0.23±0.10 0.17±0.09 0.15±0.05 0.26±0.10

C5 0.26±0.16 0.35±0.21 0.29±0.13 0.37±0.16 0.30±0.16 0.32±0.30

C6 0.24±0.18 0.17±0.07 0.15±0.07 0.42±0.31 0.26±0.20 0.17±0.11

C7 0.21±0.12 0.30±0.05 0.16±0.16 0.17±0.05 0.24±0.08 0.10±0.05

Table 5: Root-mean-squared error of the hierarchical method and the operator-assisted

method. All measurement units are in mm. We did not find any statistically significant

difference (p > 0.01) in rms error between the hierarchical and the operator-assisted

method for any bone.

Figure 8 shows the root-mean-squared (rms) error of the hierarchical and

the operator-assisted methods. Root-mean-squared error indicates no sta-
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Figure 8: Root-mean-squared error (mm) for the hierarchical and the operator-assisted

single-bone method. X, Y and Z denote the axes of comparison. We did not find any

statistical significant difference (p > 0.01) in rms error between the hierarchical and the

operator-assisted method for any bone. Results are averaged over 13 trials from 3 subjects,

60 ∼ 100 frames per trial.
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Figure 9: Maximum error for the hierarchical and the operator-assisted single-bone

method. X, Y and Z denote the axes of comparison. The automated hierarchical method

is as accurate as the operator-assisted method. Please note that relatively higher values

of maximum error (compared to rms error, bias and precision) indicate the presence of

some outliers X-ray frames with poorer image quality than most other frames of a motion

sequence. Results are summarized over 13 trials from 3 subjects, 60 ∼ 100 frames per

trial.
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tistically significant difference (p > 0.01) between the hierarchical and the

operator-assisted methods (Table 3) for any bone in any coordinate system

direction. From Fig. 8, we can see that vertebrae C5 and C6 show slightly

higher rms error than the vertebrae C3, C4 and C7 for the operator-assisted

single-bone method. For the operator-assisted single-bone method, the max-

imum rms error is 1.11mm for C5 and C6, and 0.44mm for C3, C4 and

C7. For the hierarchical multi-bone method, the maximum rms error is

0.70mm for C5 and C6, and 0.51mm for C3, C4 and C7. The rms error re-

sult again indicates that the hierarchical multi-bone method is as accurate as

the operator-assisted single-bone method even for the vertebrae with fusion

hardware.

Figure 9 shows the maximum error of the hierarchical and the operator-

assisted method. It is interesting to see that for both of the methods the

maximum error is often greater or close to 1mm (especially for C5 and C6).

Considering the sub-millimeter level values found in bias, precision and rms

error analysis, these high values in maximum error analysis indicate the pres-

ence of outliers X-ray frames where the image quality is relatively poorer than

most other frames. According to our expert operators, this is often the case

and the operator-assisted single-bone method fails mainly for these outliers

frames.

Table 7 and Table 8 summarize the translation and rotation analysis with

respect to anatomical coordinates. For the hierarchical approach, the average

precision in measuring 3D joint kinematics is 0.27mm for translations (com-

pared to 0.37mm using the operator-assisted method) and 1.090 for rotations

(compared to 1.100 for the operator-assisted method). Hotteling’s T-Squared
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Maximum error

Hierarchical multi-bone method Assisted single-bone method

Axis X Y Z X Y Z

C3 1.01 0.55 0.53 0.56 0.50 0.43

C4 0.48 0.43 0.50 0.43 0.45 0.59

C5 1.28 0.93 0.55 1.34 0.97 0.56

C6 1.28 0.72 0.43 1.68 1.57 0.99

C7 0.27 0.11 0.18 0.24 0.44 0.30

Table 6: Maximum error of the Hierarchical method and the operator-assisted method.

All measurement units are in mm.

testing (p > 0.01) found no statistically significant difference between the two

methods.

Translation accuracy in anatomical coordinate system over all trials

Hierarchical multi-bone method Operator-assisted single-bone method

Axis LM SI AP LM SI AP

Bias 0.46±0.67 0.22±0.33 0.85±1.10 0.47±0.59 0.09±0.32 0.69±0.75

Precision 0.25±0.06 0.20±0.12 0.35±0.17 0.32±0.09 0.40±0.34 0.41±0.17

Table 7: Translational (anatomical coordinates) bias and precision of the hierarchical

method and the operator-assisted method. All measurement units are in mm. There

was no statistically significant difference (Hotteling’s T-Squared, p > 0.01) in bias and

precision between the hierarchical and the operator-assisted method.

A quantitative analysis of the implant hardware motion could not be per-

formed due to the lack of a bead-based ground truth solution. However, two

human expert operators manually checked the hierarchical method tracking

solution of the implant hardware. According to the expert operators, the

hierarchical method tracking solution of implant hardware was accurate and
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Rotation accuracy in anatomical coordinate system over all trials

Hierarchical multi-bone method Operator-assisted single-bone method

Axis LM SI AP LM SI AP

Bias -0.31±2.80 -0.17±1.59 0.31±1.49 -0.08±1.71 -0.14±1.65 0.32±1.55

Precision 1.26±0.46 0.95±0.26 1.08±0.47 1.37±0.51 0.94±0.24 0.97±0.19

Table 8: Rotational (anatomical coordinates) bias and precision of the hierarchical method

and the operator-assisted method. All measurement units are in degrees. There was no

statistically significant difference (Hotteling’s T-Squared, p > 0.01) in bias and precision

between the hierarchical and the operator-assisted method.

those experts often commented that the hierarchical tracking solution seemed

better than the operator-assisted method tracking solution.

To further analyze the effect of implant hardware on method accuracy,

we used the hierarchical method to track a trial (subject 1, flexion-extension

trial 1) without including the implant hardware in the MDRR generation

process. This approach produced very poor quality solution for the fused

vertebra C5, while the other fused vertebra C6 went off track around frame

15.

3.2. Robustness

To compare the robustness of the hierarchical approach against the single-

bone method across trials, we tracked 13 trials from the 3 subjects with each

method. Both methods were run without human operator assistance af-

ter initialization of the reference frames. The single-bone method failed to

track 5 trials (3 flexion/extensions and 1 axial rotation from subject 1, 1

flexion/extension from subject 3). In all these trials, either vertebra C5 or

C6 went significantly off track. For example, in the flexion/extension trial
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(a) (b)

(c) (d)

Figure 10: Comparison of tracking results between the single-bone method without op-

erator assistance (top row) against the hierarchical approach without operator assistance

(bottom row). In each row, the two camera views are shown, with the vertebra (green) su-

perimposed on the X-ray image (red); dotted lines show the target location of the vertebra.

Note the single-bone solution is off-track, while the hierarchical one is on target.
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from subject 3, vertebra C6 went visibly off track around frame 6 and the

bone remained off track for the rest of the frames. C6 also went off track in

all 3 flexion/extension trials from subject 1 approximately around frame 10

(Fig. 10). C5 went off track in one axial rotation trial from subject 1 around

frame 15. Although the single-bone method was able to complete tracking

the remaining 8 trials, the tracking results required significant manual cor-

rection through human operator intervention. In contrast, the hierarchical

approach completed successfully all trials, and the results required no manual

correction.

3.3. Run Time

We used a Windows based cluster with 24 Intel Xeon (2.0 GHz) processors

to run both the operator-assisted and the hierarchical tracking methods. The

operator-assisted single-bone method required approximately 1 hour to track

a single cervical vertebra in a single trial of 60 ∼ 90 frames, leading to a total

of 6 hours for the five cervical vertebrae and the metallic implant. 96% of the

time was spent on human interaction during the tracking (to keep bones on

track) and the manual refinement phase. The hierarchical method tracked

five cervical vertebrae and the metallic implant on average in approximately

25 minutes, i.e., it attained a speedup factor of 12. While having a faster

solution is not the main contribution of this work, these run times indicate the

hierarchical method is cost-effective, which is essential for clinical application.

4. Discussion

The experimental results show that the hierarchical multi-bone method

matches the sub-millimeter accuracy of the state-of-the-art operator-assisted
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single-bone method. At the same time, the hierarchical method is superior

to the single-bone method in terms of robustness (100% compared to 61%)

and run-time (1 compared to 12). Notably, the hierarchical approach dra-

matically reduces the labor required for imaging studies, while making the

accuracy and robustness of the method operator-independent.

An advantage of the hierarchical method is that it is able to track bones

that change both direction and speed within each camera view during a

specific trial, a task significantly more difficult than tracking a bone that

moves in the same direction at a constant speed. In our experiments, no

restrictions were imposed on the subjects during motion. The maximum

range of motion was approximately 20mm translation and 320 rotation; bone

motion direction and speed had variations in all datasets.

In our experiments, we used post-operative CT scan data to extract a

model of each hierarchy component to be tracked, be they vertebrae or ad-

ditional hardware. However, a pre-operative CT scan can also be used with

this approach. The pre-operative scan would be used to extract models of

the bones; while the implant model can be acquired either through scanning

or directly thanks to CAD designs.

We followed an incremental approach in developing the four step hierar-

chical searching process. For example, the initial searching process included

only two steps (Phase 1 and 3) and produced a poor solution for the first

node of the hierarchy. We tried several other structures for the hierarchical

searching e.g. different orderings of the phases and different orderings of

the bones. These approaches did not produce any improvements over the

approach described in this paper.
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Furthermore, the hierarchical multi-bone method assumes that noise in

X-ray images due to surrounding soft-tissue structure of cervical spine is

negligible. However, it is often very challenging to avoid soft-tissue inter-

ference and get high quality noise-free X-ray images from both cameras of

a DSX system due to restrictions imposed by a subject’s motion and body

structure. Current model-based techniques, including the one reported in

this paper, frequently employ image filters as a pre-processing step to reduce

noise due to soft tissue [19]. Many of these image processing techniques [20]

require manual tuning even for a single dataset, primarily due to overall inten-

sity variation from frame to frame. Adjusting these parameters for different

datasets (or for different frames within the same dataset) requires significant

human effort, outweighing the benefits of the pre-processing step. Robust

and automatic image pre-processing remains a direction of future work.

In our experiments we compare the performance of the hierarchical multi-

bone method against the operator-assisted single-bone method which is to

the best of our knowledge the current state of the art in the field [17]. Biplane

or stereo radiographic imaging similar to the one used in our experiments en-

ables accurate quantitative 3D motion assessment for both static [5] and dy-

namic bone motion analysis. Bone location and orientation can be precisely

measured by beads (Radiostereometric analysis or RSA) implanted into the

bones [18]; bead-based tracking has shown good accuracy and has been used

to produce ground truth to validate other tracking methods [5, 18]. Other

model-based methods are primarily single-2D to 3D matching (i.e. they only

collect one x-ray view [21, 22, 23]). Typically, motion is kept within a plane

perpendicular to the direction of camera projection. A study on knee implant
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tracking [24] reported out of plane translation errors greater than 3 mm de-

spite the fact that the movement was mainly in plane. Banks [21] compares

the accuracy of his method to others. To summarize, all matching that is

done using only one X-ray view has large errors perpendicular to the imaging

plane. This class of methods is highly unlikely to produce higher accuracy

results than the biplane radiographic approach. Several groups do collect

2 X-ray views [25, 26]. They build bone models from MRI/CT and either

manually match the model to the 2 X-ray views or use invasively implanted

beads for the matching process. Given the fundamentally manual, respec-

tively invasive matching processes used, these approaches are not preferable

to either the expert-assisted method or the hierarchical method described

here.

While our experiments use data acquired through a stereo-radiographic

imaging system and a CT scanner, a variety of imaging hardware setups,

including single-plane radiography, can be used in practice to acquire dy-

namic radiograph images. Stereo-imaging is more likely than single-plane

radiography to suffer from image quality problems due to scatter radiation

and thus tracking motion from stereo images is likely to benefit more from

our approach. However, radiographic bone overlap and temporal coherence

are traits of both single-plane and stereo-imaging; our hierarchical tracking

algorithm may enhance the accuracy and robustness of single-plane dynamic

tracking. A major advantage of our approach is that in the long run it could

eliminate the requirement for simultaneous image acquisition, thus leading

to dramatic improvements in radiographic image quality.
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5. Conclusion

In this paper, we have introduced and validated an intelligent, hierarchi-

cal algorithm which improves the accuracy, reliability, and/or flexibility of

the dynamic radiograph tracking process. The two significant innovations

proposed – 1) multibone projection (MDRR); and 2) temporally-aware con-

strained hierarchical optimization – can be applied in combination to enable

rapid, automated, accurate bone motion tracking and to facilitate clinical

application.

When applied to cervical spine data, the new algorithm matched the sub-

millimeter accuracy of the expert-operator existing tracking process, while

being automated and operator-independent. The approach was also more

robust in the presence of implanted hardware than the single-bone tracking

process. Finally, the approach sped up the total tracking time by a factor of

12. Preliminary evaluation indicates similar improvements on in vitro lumbar

spine data [27].

Our automated process decreases the labor cost associated with human

operators, which facilitates practical clinical application. Considering the rel-

atively low levels of radiation involved by the imaging system (approximately

half the amount of one cervical CT scan), the moderate hardware costs and

the proliferation in recent years of biplane DSX systems, the automation

of the tracking procedure shows promise for large-scale clinical application.

Since the approach showed also good performance in the presence of im-

planted hardware, it can be used to study post-surgery cases and evaluate

the effectiveness of a surgical intervention. Applications for this technology

include (but are not limited to) assessment and diagnosis of musculoskeletal
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disorders, bone, ligament and joint injury, derangements of the spine and

ostearthritis.
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