
Navigating a Galaxy of Observations: From Frustration to Innovation

Daniel Q. Oliphant+, Brian A. Cherinka*, W. Michael Wood-Vasey*, Jeffrey A. Newman*,

Alex Labrinidis+, Panos Chrysanthis+, G. Elisabeta Marai+

University of Pittsburgh, +Department of Computer Science, *Department of Physics and Astronomy

Figure 1. 831 points from the Sloan Digital Sky Survey database are visualized efficiently using PNG encryption. Two query results are

overlaid on top of each other (brighter red intensities, respectively blue correspond to greater values), revealing spatial patterns in
conjunction to attribute overlaps. The interface allows for flexible control of the resulting visualizations.

1 INTRODUCTION
Over the next decade the amount of information available to the

typical astronomer will grow by two orders of magnitude, thanks
to programs such as Pan-STARRS (Panoramic Survey Telescope
and Rapid Response System) [4] and LSST (Large Synoptic
Survey Telescope) [5]. However, we lack an easy-to-use and
scalable way to collect, analyze and distribute anything beyond
the most basic data on the thousands to billions of individual
events and objects studied. Existing tools lack the capability to
link data on an individual object or event together, the flexibility
to allow large numbers of expert annotations and knowledge
sharing, or both.
The most important challenge here is that of scalability. The sheer
volume of data and meta-data (e.g., expert opinions) necessitates
new paradigms to search, browse, and visualize, so that human
users do not get lost in a sea of data. For example, Fig. 2 shows a
typical visualization of about 60 annotations (of different types)
on objects in a small part of the sky. Even at such low numbers,
the icons used to represent each piece of data quickly fill the
screen space and become difficult to sift through. Thus, this
approach scales very poorly while astronomy research requires
efficient scalability. Second, the icons seldom give information
beyond what type of object they represent without actually being
clicked on to bring up their full data in a pop up window. This
makes it difficult to compare and contrast the attributes of similar
objects. This gives the false impression that the data is
homogenous. Even in this reduced example, it is very hard to
answer questions based on these annotations without tools for
effectively representing and querying the data.

Given the inherent visual nature of astronomical data, developing
such tools requires tight interaction between visualization and data
management, along with domain expertise. We propose a
prototype system for the scalable collection, analysis and sharing
of astronomy data via a client-server architecture; the prototype
was developed in collaboration with astronomy experts.

2 METHODS
The prototype system follows a client-server architecture, in
which a web-browser client interacts with astronomy databases
through a PHP-based web-server. For demonstration purposes we
use a synthetically-generated MySQL database, respectively the
Sloan Digital Sky Survey (SDSS) database [3]. A PHP script on
the server interacts directly with the database, sending specific
queries and then generating a PNG format image based on the
result of the query. The PNG image is sent over a network to a
web-browser based client. The client receives the image and
displays it on a globe rendered in an HTML Canvas element.
Database The relational database stores the astronomy data; we
assume that each tuple in the database includes Right Ascension
and Declination attributes (the equivalent of latitude and longitude
on the sky), indicating the location of the object stored. This
assumption holds for all major astronomical databases.

Figure 2. Traditional annotations in an early prototype system, built

on top of Google Sky. The picture contains only about 60
annotations, yet the information is almost illegible.

Department of Computer Science, University of Pittsburgh,
Pittsburgh, PA 15230
Email: {dqo1, bac29, wmwv, janewman, labrinid, panos,

marai}@pitt.edu

Server The PHP script on the web server is invoked when the
client application requests a new image with specific
requirements. The PHP script takes the client requirements ---
desired resolution of the output image, the minimum and
maximum right ascension and declination values, attribute
thresholds, desired color-mapping, and any other optional filters
on the other parameters present in the database --- and submits
them as a query to the database. Upon receiving a response from
the database, the PHP script creates a new PNG image of the
client-specified resolution and proceeds to draw on the image
each tuple returned by the query. The right ascension and
declination columns in each tuple are used to position the drawing
within the image. The closer the value of the key attribute is to
the maximum threshold, the brighter the color will be drawn at
that point. Conversely, a lower value will result in a dimmer
color. All data tuples are added to the image, which is then
compressed and returned to the client application.
Client Application The client application is a web interface that
consists of W3C standard html, css, and javascript. The
visualization is accomplished using WebGL -- a web standard that
provides a 3D graphics API implemented in a web browser
without the use of plug-ins [2]. The client renders the scene to an
HTML Canvas element, where the visualization scenegraph
consists of a sphere with the camera at the center looking out.
The generated images are mapped to the visible portions of the
sphere to give the impression of looking out into space. The width
and height of the viewport are used to specify the resolution of the
desired image. The user generates all other elements of the query
using standard HTML input controls.

Figure 3. Client-based WebGL scenegraph consisting of a sphere

and camera (outside the sphere here for demonstration
purposes). The default camera is generally located at the

sphere center, looking out. The sky data is drawn upon the
sphere (synthetic dataset shown here in red).

3 RESULTS
The prototype system was tested on both synthetic and real
datasets. Both tests focused on an area of the sky between 138
and 141 degrees Right Ascension and between 4 and 6 degrees
Declination.
The synthetic dataset was stored in a database on the same server
as the PHP script. The synthetic data was given a redshift
parameter (a measure of how far objects are away from us) that
would result in a gradient in the final image to ensure that the
visualization accurately represented data patterns and did not
introduce artifacts (Fig. 3). In terms of performance, the average
time to query the database and generate the image was 3.51
seconds. The result mapped 10,000 data points to a 1200x800

pixel image that is 382,337 bytes in size in compressed PNG
format.
The real astronomy data was taken from the Sloan Digital Sky
Survey SpecObj database. The redshift of every object within the
bounding box was returned and used to generate the image
overlay in Fig. 1. The average time to query the SDSS database
and generate the image was 2.03 seconds. The result efficiently
mapped 831 data points to a 1200x800 pixel image that is 110,185
bytes in size in compressed PNG format. Rendering to a canvas of
1024 by 768 pixels, the interface ran at 35 frames per second.

4 DISCUSSION AND CONCLUSION
As indicated by Fig.1, earlier iterations of the current prototype
employed as an interface the Google Sky internet browser plugin
[1]. Despite the manifold capabilities of the plugin – many
inherited from Google Maps -- it quickly became apparent that the
Google Sky Javascript API was not flexible or versatile enough to
implement a scalable solution. Later iterations used direct access
to the astronomy databases and a working sky interface that was
built from the ground up using WebGL [2].
In conclusion, we presented a prototype system for generating and
mining scalable, graphical representations of astronomy data. The
system overcomes current limitations in astronomy database
visualization by following a WebGL - PHP client-server
architecture; the results of querying astronomy databases are
compressed as PNG images. The advantages of this approach are
its versatility and visual scalability (to the pixel level), enabling
the visual analysis of large datasets. The resulting versatility
allows for flexible control over the visualization and the client-
side scripts. Preliminary feedback from astronomy researchers
shows they appreciate the versatility and visual scalability of this
solution.

Figure 4. Overlay produced using synthetic data (for validation and

performance evaluation purposes) that clearly shows the
gradient pattern in the data. 10,000 data points are efficiently

mapped to a PNG file.

REFERENCES
[1] Google Earth. http://Earth.google.com/sky.
[2] "WebGL - OpenGL ES 2.0 for the Web

http://www.khronos.org/webgl/.
[3] SDSS SkyServer DR7. http://skyserver.sdss.org.
[4] PAN-STARRS www.pan-starrs.ifa.hawaii.edu
[5] LSST www.lsst.org

