
Real Time Ray Tracing in a Space Limited Environment

Daniel Q. Oliphant+, G. Elisabeta Marai+

University of Pittsburgh, +Department of Computer Science, {dqo1, marai}@cs.pitt.edu

Figure 1. Proof of concept of a real-time ray-tracing collision model. A 2-dimensional space of 800 by 600 pixels is used to represent each

pixel as being occupied or free. The space is initialized with a particle system; the user manipulates the particle system through the
mouse; forces such as gravity can also be controlled. (For a videoclip please see:
http://www.youtube.com/watch?v=HhN1WfbWCNU&feature=player_embedded).

1 INTRODUCTION
Ray tracing as a rendering technique has many useful

applications in both simulation and entertainment. A real-time
ray-tracing engine is even more valuable as it allows for user
interactivity, greatly increasing the number of potential uses for
such a renderer. Most ray tracing techniques are employed either
to enhance realism or for purely aesthetic purposes. These
engines are generally far more costly for rendering a scene than
traditional rasterization techniques. In this work we explore the
potential strengths of ray tracing in terms of efficiency greater
than that of rasterization.

A great limitation in ray tracing is the number of objects or the
geometric detail of the objects present in a scene. While a simple

sphere or cube may be rendered with stunning detail and great
accuracy at high frame rates, add more objects to the scene or
make those objects more complex and rendering speed slows to a
crawl. This is very noticeable in even the most advanced video
games where ray-tracing techniques are used. While one ray
traced rendition of a tree may look great and render quickly, add
more trees to the scene or even an entire forest and the experience
quickly degrades. This is mainly due to the common methods of
detecting ray-plane intersections. Often, rays must be
mathematically compared to each and every object in the scene to
determine where the nearest intersection occurs (or if an
intersection occurs at all). Thus, doubling the number of objects
in a scene, or doubling the number of polygons in a single object,
effectively doubles the number of calculations that must be

performed on each ray. To put this problem into perspective,
consider a screen of 800 by 600 resolution. This relatively small
screen contains 480,000 pixels, and so 480,000 rays must be
traced into a scene in order to generate a single frame. For each
and every geometric object in the scene (e.g. for each polygon),
480,000 ray-plane intersection tests must be performed. Add a
few models of a few thousand polygons each and it quickly
becomes apparent why the branches on the trees in a top-selling
video game must necessarily be so flat. It is apparent that the
greatest weakness in ray tracing is its substantial cost, and thus a
more efficient method of ray tracing would be of great worth. In
this paper we propose a space-aware approach to increase the
speed at which rays are traced, as well as implicit solutions to
common ray-tracing issues.

2 METHODS
This method of performing ray-plane intersection tests for
everything in the scene can seem very counter-intuitive. In the
real world, if a ball is moving through a room full of obstacles, it
is not necessary to consider all the obstacles in the room to know
whether the ball will continue moving or collide with something
in the next millisecond. Rather, only one point in space matters in
determining whether there is a collision with that ball: the area
that the ball is trying to occupy. If there is already an object there,
the ball will collide. If the space is empty, then the ball moves to
fill it. In such an environment an increased number of objects
would have no effect on the complexity of the collision algorithm
for the ball. Whether there be hundreds or hundreds of millions of
objects in the room with the ball, only that one location must be
checked to determine whether the ball collides or keeps moving.
The same real-world idea may be applied to the collision detection
necessary for ray tracing. When three-dimensional space was first
being represented on a computer, memory was scarce and so great
levels of abstractions were necessary to hold 3d objects in
memory. At the time, the idea of representing every single unit of
space in a 3d scene of even modest size was completely
infeasible. Today, the situation has changed. Memory has
become a much more abundant resource and with this increase in
availability new algorithms that utilize vast amounts of memory
have become feasible. Instead of representing a box or a tree as a
collection of vertices it is possible to allocate a three-dimensional
array of memory and occupy each location in that array that the
tree or box would occupy in real life. Then, when it comes time
to test for collision upon moving into a specific space in this
array, only the one index need to considered. Applying this sort
of collision or intersection test along a ray is slightly more
complicated than with the ball example primarily because an
entire set of points along the ray must be considered and the
collision closest to the origin detected.

The first step to create such an engine from scratch was to build a
simple proof of concept of the collision model (Figure 1). In this
two- dimensional environment every single pixel is represented in
memory as being occupied or free. This allows for highly
efficient, simple, and reasonably accurate collision-detection.

Upon creating this proof of concept it became apparent how brash
the original idea of representing every unit of 3d space in memory
might be. While memory has become far more widely available
than it once was, the memory requirements of this algorithm are
orders of magnitude greater than the traditional approach. A 2
dimensional space like the one used in this example (800 by 600

pixels) requires 480,000 units of memory. Add just one pixel-
sized unit of depth to the scene and already the memory
requirements double. A scene that is as deep as this one is wide
(800 by 600 by 800 pixels) would require 384,000,000 units of
memory! It seems that the 4 – 16 Gigabytes of memory available
on modern machines may not yet be able to cut it.

This proof of concept also brought to mind the importance of
determining what information needs to be stored at any given
location in space. For the proof of concept, only the state of being
occupied or not was stored. A single bit for each pixel on screen
represented this. Storing any more information than that would be
much more costly, but many attributes such as color, surface
normals, and opacity may need to become pertinent in a ray
tracing environment. At this time methods of reusing similar data
with pointers and aggregating large amounts of uniform data were
considered for practicality in the implementation of the actual ray-
tracing engine.

Figure 2. Orthographic Ray-Trace.

Having seen promising results with the proof of concept, the next
step became to implement a very rudimentary version of the
originally designed ray tracer. This first ray tracer was a single
pixel deep, just like the proof of concept. At each frame, a ray
was sent from each pixel on the screen straight into the scene and
traveled the distance of one pixel to check if that space was
occupied. If the space was occupied, the pixel from which the ray
originated was colored white. If it was empty, the corresponding
pixel was colored black. While this may not seem like the ray-
tracing engine seen in today’s hottest video games, in the most
fundamental sense it was doing ray tracing.

The next step was obviously to add more than one pixel of depth
to the scene. This is where the limits of a 32-bit operating system
with 4gb of ram came into play. With just a few levels of depth,
the memory was depleted, and so the scene was hardly even 3d.
At this time it became necessary to change the original plan of
representing each unit of space in memory whether or not it was
occupied. By implementing an oct-tree structure, only the points
that were occupied were actually represented in memory while the
vast expanses of empty space were consolidated where high-level
tree nodes had no children.

Number of Points Seconds per Frame
1 0.105575
10 0.310432
100 0.828678
1,000 1.980592
10,000 4.469226
100,000 7.086494
1,000,000 3.390397
10,000,000 1.172221
20,000,000 0.942457

Table I. Perspective rendering.

While the oct-tree did solve the problem of memory constraints, it
added a level of complexity to checking a single point in the
scene. Instead of simply indexing the point in a 3-dimensional
array like had originally been planned, it was necessary to traverse
the oct-tree. As a trade off, the oct-tree could eliminate costly
checks into vast areas of emptiness if traversed in the right order.
For simplicity, an orthographic, front to back traversal of the oct-
tree was executed for each ray. So while this version of the ray-
tracing engine included depth, it was rendered orthographically.

In Figure 2 the results of this orthographic ray-trace can be seen.
In this scene, spherical objects were added to the world, world
unit by world unit. The distance away from the camera
determines the brightness of the coloring, so depth can be seen
even without lighting or perspective. The next and final step for
the purposes of this project was to implement perspective in the
ray-tracing scheme. While this was technically a frustrating
algorithm to get right, it eventually boiled down to intelligently
traversing the tree at the appropriate angle to the camera instead
of straight back like before.

3 RESULTS
One of the strengths inherent to this method of ray tracing is the
automatic pruning that occurs in a scene when a ray intersects
with an object without have to consider the objects behind it. This
strength may lend itself greatly to situations where very large
numbers of objects need to be painted to the screen such as in the
case of Cosmological Simulation. When millions or even billions
of stars need to be rendered to the screen, it is wasteful to try to
paint all those stars to a viewing area of only 480,000 pixels.
Ray-tracing locks the amount of work to be done to the number of
rays to be traced, thus adding more objects does not substantially
decrease performance as it does in rasterization.

Performance test results based on the engine running on a single
processor are shown in Table I and Table II. While the
performance of rasterization techniques begins to quickly degrade
around one million points, this is where the ray-tracing engine
gets strongest. This is just one possible use for this different
approach to rendering.

4 DISCUSSION AND CONCLUSION
While the results show that this engine needs further
optimizations and improvements before it can be useful for
interactive rendering, it can be said that these early results are
promising and indicate that such an approach to rendering could
solve certain classes of problems. The great amount of memory
on modern systems may be utilized to take much of the load off
the processor. Since memory has become relatively cheap, this
approach seems logical for most efficient use of system resources.

In order to make this algorithm useful, it must be optimized to
decrease the render time of any given frame. The most obvious
approach to optimization is to parallelize the algorithm. Since
each pixel on the screen and therefore each ray can be evaluated
separately, it is possible to make this algorithm massively parallel.
Such a solution would make efficient use of as many processors
as there are pixels on a screen.

REFERENCES
[1] Baboud, Lionel, and Xavier D'ecoret. "Realistic Water
Volumes in Real-‐Time." Eurographics Workshop on Natural
Phenomena (2006).

[2] Fraedrich, Roland, Jens Schneider, and Rudiger Westermann.
"Exploring the Millennium Run - Scalable Rendering of Large-Scale
Cosmological Datasets." IEEE TVCG Oct 2009.

Number of Points Seconds per Frame
1 0.007379
10 0.015365
100 0.057024
1,000 0.153735
10,000 0.373861
100,000 0.866302
1,000,000 1.49762
10,000,000 0.883987
20,000,000 0.669997

Table II. Orthographic Rendering.

