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Figure 1. Proof of concept of a real-time ray-tracing collision model. A 2-dimensional space of 800 by 600 pixels is used to represent each 

pixel as being occupied or free. The space is initialized with a particle system; the user manipulates the particle system through the 
mouse; forces such as gravity can also be controlled. (For a videoclip please see: 
http://www.youtube.com/watch?v=HhN1WfbWCNU&feature=player_embedded). 

 

1 INTRODUCTION 
Ray tracing as a rendering technique has many useful 

applications in both simulation and entertainment.  A real-time 
ray-tracing engine is even more valuable as it allows for user 
interactivity, greatly increasing the number of potential uses for 
such a renderer.  Most ray tracing techniques are employed either 
to enhance realism or for purely aesthetic purposes.  These 
engines are generally far more costly for rendering a scene than 
traditional rasterization techniques.  In this work we explore the 
potential strengths of ray tracing in terms of efficiency greater 
than that of rasterization.  

A great limitation in ray tracing is the number of objects or the 
geometric detail of the objects present in a scene.  While a simple 

sphere or cube may be rendered with stunning detail and great 
accuracy at high frame rates, add more objects to the scene or 
make those objects more complex and rendering speed slows to a 
crawl.  This is very noticeable in even the most advanced video 
games where ray-tracing techniques are used.  While one ray 
traced rendition of a tree may look great and render quickly, add 
more trees to the scene or even an entire forest and the experience 
quickly degrades.  This is mainly due to the common methods of 
detecting ray-plane intersections.  Often, rays must be 
mathematically compared to each and every object in the scene to 
determine where the nearest intersection occurs (or if an 
intersection occurs at all).  Thus, doubling the number of objects 
in a scene, or doubling the number of polygons in a single object, 
effectively doubles the number of calculations that must be 



performed on each ray.  To put this problem into perspective, 
consider a screen of 800 by 600 resolution.  This relatively small 
screen contains 480,000 pixels, and so 480,000 rays must be 
traced into a scene in order to generate a single frame.  For each 
and every geometric object in the scene (e.g.  for each polygon), 
480,000 ray-plane intersection tests must be performed.  Add a 
few models of a few thousand polygons each and it quickly 
becomes apparent why the branches on the trees in a top-selling 
video game must necessarily be so flat.  It is apparent that the 
greatest weakness in ray tracing is its substantial cost, and thus a 
more efficient method of ray tracing would be of great worth. In 
this paper we propose a space-aware approach to increase the 
speed at which rays are traced, as well as implicit solutions to 
common ray-tracing issues.   

2 METHODS 
This method of performing ray-plane intersection tests for 
everything in the scene can seem very counter-intuitive.  In the 
real world, if a ball is moving through a room full of obstacles, it 
is not necessary to consider all the obstacles in the room to know 
whether the ball will continue moving or collide with something 
in the next millisecond.  Rather, only one point in space matters in 
determining whether there is a collision with that ball: the area 
that the ball is trying to occupy.  If there is already an object there, 
the ball will collide.  If the space is empty, then the ball moves to 
fill it.  In such an environment an increased number of objects 
would have no effect on the complexity of the collision algorithm 
for the ball.  Whether there be hundreds or hundreds of millions of 
objects in the room with the ball, only that one location must be 
checked to determine whether the ball collides or keeps moving.  
The same real-world idea may be applied to the collision detection 
necessary for ray tracing.  When three-dimensional space was first 
being represented on a computer, memory was scarce and so great 
levels of abstractions were necessary to hold 3d objects in 
memory.  At the time, the idea of representing every single unit of 
space in a 3d scene of even modest size was completely 
infeasible.  Today, the situation has changed.  Memory has 
become a much more abundant resource and with this increase in 
availability new algorithms that utilize vast amounts of memory 
have become feasible.  Instead of representing a box or a tree as a 
collection of vertices it is possible to allocate a three-dimensional 
array of memory and occupy each location in that array that the 
tree or box would occupy in real life.  Then, when it comes time 
to test for collision upon moving into a specific space in this 
array, only the one index need to considered.  Applying this sort 
of collision or intersection test along a ray is slightly more 
complicated than with the ball example primarily because an 
entire set of points along the ray must be considered and the 
collision closest to the origin detected.   
 
 
The first step to create such an engine from scratch was to build a 
simple proof of concept of the collision model (Figure 1).  In this 
two- dimensional environment every single pixel is represented in 
memory as being occupied or free.  This allows for highly 
efficient, simple, and reasonably accurate collision-detection.   
 
Upon creating this proof of concept it became apparent how brash 
the original idea of representing every unit of 3d space in memory 
might be.  While memory has become far more widely available 
than it once was, the memory requirements of this algorithm are 
orders of magnitude greater than the traditional approach.  A 2 
dimensional space like the one used in this example (800 by 600 

pixels) requires 480,000 units of memory.  Add just one pixel-
sized unit of depth to the scene and already the memory 
requirements double.  A scene that is as deep as this one is wide 
(800 by 600 by 800 pixels) would require 384,000,000 units of 
memory!  It seems that the 4 – 16 Gigabytes of memory available 
on modern machines may not yet be able to cut it.   
 
This proof of concept also brought to mind the importance of 
determining what information needs to be stored at any given 
location in space.  For the proof of concept, only the state of being 
occupied or not was stored.  A single bit for each pixel on screen 
represented this.  Storing any more information than that would be 
much more costly, but many attributes such as color, surface 
normals, and opacity may need to become pertinent in a ray 
tracing environment.  At this time methods of reusing similar data 
with pointers and aggregating large amounts of uniform data were 
considered for practicality in the implementation of the actual ray-
tracing engine. 
 

 
Figure 2. Orthographic Ray-Trace. 

 
Having seen promising results with the proof of concept, the next 
step became to implement a very rudimentary version of the 
originally designed ray tracer.  This first ray tracer was a single 
pixel deep, just like the proof of concept.  At each frame, a ray 
was sent from each pixel on the screen straight into the scene and 
traveled the distance of one pixel to check if that space was 
occupied.  If the space was occupied, the pixel from which the ray 
originated was colored white.  If it was empty, the corresponding 
pixel was colored black.  While this may not seem like the ray-
tracing engine seen in today’s hottest video games, in the most 
fundamental sense it was doing ray tracing.   
 
The next step was obviously to add more than one pixel of depth 
to the scene.  This is where the limits of a 32-bit operating system 
with 4gb of ram came into play.  With just a few levels of depth, 
the memory was depleted, and so the scene was hardly even 3d.  
At this time it became necessary to change the original plan of 
representing each unit of space in memory whether or not it was 
occupied.  By implementing an oct-tree structure, only the points 
that were occupied were actually represented in memory while the 
vast expanses of empty space were consolidated where high-level 
tree nodes had no children.   
 
 



Number of Points Seconds per Frame 
1  0.105575  
10  0.310432 
100  0.828678 
1,000  1.980592 
10,000  4.469226 
100,000  7.086494 
1,000,000  3.390397 
10,000,000  1.172221 
20,000,000  0.942457 

Table I. Perspective rendering. 
 
 
 
While the oct-tree did solve the problem of memory constraints, it 
added a level of complexity to checking a single point in the 
scene.  Instead of simply indexing the point in a 3-dimensional 
array like had originally been planned, it was necessary to traverse 
the oct-tree.  As a trade off, the oct-tree could eliminate costly 
checks into vast areas of emptiness if traversed in the right order.  
For simplicity, an orthographic, front to back traversal of the oct-
tree was executed for each ray.  So while this version of the ray-
tracing engine included depth, it was rendered orthographically.   
 
In Figure 2 the results of this orthographic ray-trace can be seen.  
In this scene, spherical objects were added to the world, world 
unit by world unit.  The distance away from the camera 
determines the brightness of the coloring, so depth can be seen 
even without lighting or perspective.  The next and final step for 
the purposes of this project was to implement perspective in the 
ray-tracing scheme.  While this was technically a frustrating 
algorithm to get right, it eventually boiled down to intelligently 
traversing the tree at the appropriate angle to the camera instead 
of straight back like before.  
 

3 RESULTS 
One of the strengths inherent to this method of ray tracing is the 
automatic pruning that occurs in a scene when a ray intersects 
with an object without have to consider the objects behind it.  This 
strength may lend itself greatly to situations where very large 
numbers of objects need to be painted to the screen such as in the 
case of Cosmological Simulation.  When millions or even billions 
of stars need to be rendered to the screen, it is wasteful to try to 
paint all those stars to a viewing area of only 480,000 pixels.  
Ray-tracing locks the amount of work to be done to the number of 
rays to be traced, thus adding more objects does not substantially 
decrease performance as it does in rasterization.   
 
 
Performance test results based on the engine running on a single 
processor are shown in Table I and Table II.  While the 
performance of rasterization techniques begins to quickly degrade 
around one million points, this is where the ray-tracing engine 
gets strongest.  This is just one possible use for this different 
approach to rendering.   
 
 

4 DISCUSSION AND CONCLUSION 
While the results show that this engine needs further 
optimizations and improvements before it can be useful for 
interactive rendering, it can be said that these early results are 
promising and indicate that such an approach to rendering could 
solve certain classes of problems.  The great amount of memory 
on modern systems may be utilized to take much of the load off 
the processor.  Since memory has become relatively cheap, this 
approach seems logical for most efficient use of system resources.   
 
In order to make this algorithm useful, it must be optimized to 
decrease the render time of any given frame.  The most obvious 
approach to optimization is to parallelize the algorithm.  Since 
each pixel on the screen and therefore each ray can be evaluated 
separately, it is possible to make this algorithm massively parallel.  
Such a solution would make efficient use of as many processors 
as there are pixels on a screen.  
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Number of Points Seconds per Frame 
1  0.007379 
10  0.015365 
100  0.057024 
1,000  0.153735 
10,000  0.373861 
100,000  0.866302 
1,000,000  1.49762 
10,000,000  0.883987 
20,000,000  0.669997 

Table II. Orthographic Rendering. 


